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EXAMPLE 12 Determine whether 2 and 3 are primitive roots modulo 11.

Solution:When we compute the powers of 2 in Z11, we obtain 21 = 2, 22 = 4, 23 = 8, 24 = 5,
25 = 10, 26 = 9, 27 = 7, 28 = 3, 29 = 6, 210 = 1. Because every element of Z11 is a power of
2, 2 is a primitive root of 11.

When we compute the powers of 3 modulo 11, we obtain 31 = 3, 32 = 9, 33 = 5, 34 = 4,
35 = 1. We note that this pattern repeats when we compute higher powers of 3. Because not all
elements of Z11 are powers of 3, we conclude that 3 is not a primitive root of 11. ▲

An important fact in number theory is that there is a primitive root modulo p for every
prime p. We refer the reader to [Ro10] for a proof of this fact. Suppose that p is prime and r is
a primitive root modulo p. If a is an integer between 1 and p − 1, that is, an element of Zp, we
know that there is an unique exponent e such that re = a in Zp, that is, remodp = a.

DEFINITION 4 Suppose that p is a prime, r is a primitive root modulo p, and a is an integer between 1 and
p − 1 inclusive. If remodp = a and 0 ≤ e ≤ p − 1, we say that e is the discrete logarithm
of a modulo p to the base r and we write logr a = e (where the prime p is understood).

EXAMPLE 13 Find the discrete logarithms of 3 and 5 modulo 11 to the base 2.

Solution:When we computed the powers of 2 modulo 11 in Example 12, we found that 28 = 3
and 24 = 5 in Z11. Hence, the discrete logarithms of 3 and 5 modulo 11 to the base 2 are 8
and 4, respectively. (These are the powers of 2 that equal 3 and 5, respectively, in Z11.)We write
log2 3 = 8 and log2 5 = 4 (where the modulus 11 is understood and not explicitly noted in the
notation). ▲

The discrete logarithm problem takes as input a prime p, a primitive root r modulo p,The discrete logarithm
problem is hard! and a positive integer a ∈ Zp; its output is the discrete logarithm of a modulo p to the base

r . Although this problem might seem not to be that difficult, it turns out that no polynomial
time algorithm is known for solving it. The difficulty of this problem plays an important role in
cryptography, as we will see in Section 4.6

Exercises

1. Show that 15 is an inverse of 7 modulo 26.
2. Show that 937 is an inverse of 13 modulo 2436.
3. By inspection (as discussed prior to Example 1), find an
inverse of 4 modulo 9.

4. By inspection (as discussed prior to Example 1), find an
inverse of 2 modulo 17.

5. Find an inverse of a modulo m for each of these pairs
of relatively prime integers using the method followed in
Example 2.
a) a = 4, m = 9
b) a = 19, m = 141
c) a = 55, m = 89
d) a = 89, m = 232

6. Find an inverse of a modulo m for each of these pairs
of relatively prime integers using the method followed in
Example 2.
a) a = 2, m = 17
b) a = 34, m = 89

c) a = 144, m = 233
d) a = 200, m = 1001

∗7. Show that if a and m are relatively prime positive inte-
gers, then the inverse of a modulo m is unique modulo
m. [Hint: Assume that there are two solutions b and c
of the congruence ax ≡ 1 (mod m). Use Theorem 7 of
Section 4.3 to show that b ≡ c (mod m).]

8. Show that an inverse of a modulo m, where a is an in-
teger and m > 2 is a positive integer, does not exist if
gcd(a, m) > 1.

9. Solve the congruence 4x ≡ 5 (mod 9) using the inverse
of 4 modulo 9 found in part (a) of Exercise 5.

10. Solve the congruence 2x ≡ 7 (mod 17) using the inverse
of 2 modulo 7 found in part (a) of Exercise 6.

11. Solve each of these congruences using the modular in-
verses found in parts (b), (c), and (d) of Exercise 5.
a) 19x ≡ 4 (mod 141)
b) 55x ≡ 34 (mod 89)
c) 89x ≡ 2 (mod 232)
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12. Solve each of these congruences using the modular in-
verses found in parts (b), (c), and (d) of Exercise 6.
a) 34x ≡ 77 (mod 89)
b) 144x ≡ 4 (mod 233)
c) 200x ≡ 13 (mod 1001)

13. Find the solutions of the congruence 15x2 + 19x ≡ 5
(mod 11). [Hint: Show the congruence is equivalent to
the congruence 15x2 + 19x + 6 ≡ 0 (mod11). Factor the
left-hand side of the congruence; show that a solution of
the quadratic congruence is a solution of one of the two
different linear congruences.]

14. Find the solutions of the congruence 12x2 + 25x ≡
10 (mod 11). [Hint: Show the congruence is equivalence
to the congruence 12x2 + 25x + 12 ≡ 0 (mod 11). Fac-
tor the left-hand side of the congruence; show that a so-
lution of the quadratic congruence is a solution of one of
two different linear congruences.]

∗15. Show that if m is an integer greater than 1 and ac ≡
bc (mod m), then a ≡ b (mod m/gcd(c, m)).

16. a) Show that the positive integers less than 11, except
1 and 10, can be split into pairs of integers such that
each pair consists of integers that are inverses of each
other modulo 11.

b) Use part (a) to show that 10! ≡ −1 (mod 11).
17. Show that if p is prime, the only solutions of x2 ≡

1 (mod p) are integers x such that x ≡ 1 (mod p) or
x ≡ −1 (mod p).

∗18. a) Generalize the result in part (a) of Exercise 16; that
is, show that if p is a prime, the positive integers less
thanp, except 1 andp − 1, can be split into (p − 3)/2
pairs of integers such that each pair consists of inte-
gers that are inverses of each other. [Hint: Use the
result of Exercise 17.]

b) From part (a) conclude that (p − 1)! ≡ −1 (mod p)
wheneverp is prime. This result is known asWilson’s
theorem.

c) What can we conclude if n is a positive integer such
that (n− 1)! ̸≡ −1 (mod n)?

∗19. This exercise outlines a proof of Fermat’s little theorem.
a) Suppose that a is not divisible by the prime p. Show
that no two of the integers 1 · a, 2 · a, . . . , (p − 1)a
are congruent modulo p.

b) Conclude from part (a) that the product of
1, 2, . . . , p − 1 is congruent modulo p to the prod-
uct of a, 2a, . . . , (p − 1)a. Use this to show that

(p − 1)! ≡ ap−1(p − 1)! (mod p).

c) Use Theorem 7 of Section 4.3 to show from part (b)
that ap−1 ≡ 1 (mod p) if p ̸ | a. [Hint:Use Lemma 3
of Section 4.3 to show that p does not divide (p − 1)!
and then use Theorem 7 of Section 4.3. Alternatively,
use Wilson’s theorem from Exercise 18(b).]

d) Use part (c) to show that ap ≡ a (mod p) for all in-
tegers a.

20. Use the construction in the proof of theChinese remainder
theorem to find all solutions to the system of congruences
x ≡ 2 (mod 3), x ≡ 1 (mod 4), and x ≡ 3 (mod 5).

21. Use the construction in the proof of the Chinese remain-
der theorem to find all solutions to the system of congru-
ences x ≡ 1 (mod 2), x ≡ 2 (mod 3), x ≡ 3 (mod 5), and
x ≡ 4 (mod 11).

22. Solve the system of congruence x ≡ 3 (mod 6) and
x ≡ 4 (mod 7) using the method of back substitution.

23. Solve the system of congruences in Exercise 20 using the
method of back substitution.

24. Solve the system of congruences in Exercise 21 using the
method of back substitution.

25. Write out in pseudocode an algorithm for solving a si-
multaneous system of linear congruences based on the
construction in the proof of the Chinese remainder theo-
rem.

∗26. Find all solutions, if any, to the system of congruences
x ≡ 5 (mod 6), x ≡ 3 (mod 10), and x ≡ 8 (mod 15).

∗27. Find all solutions, if any, to the system of congruences
x ≡ 7 (mod 9), x ≡ 4 (mod 12), and x ≡ 16 (mod 21).

28. Use the Chinese remainder theorem to show that an
integer a, with 0 ≤ a < m = m1m2 · · · mn, where the
positive integers m1, m2, . . . , mn are pairwise relatively
prime, can be represented uniquely by the n-tuple
(a mod m1, a mod m2, . . . , a mod mn).

∗29. Letm1, m2, . . . , mn be pairwise relatively prime integers
greater than or equal to 2. Show that if a ≡ b (mod mi)
for i = 1, 2, . . . , n, then a ≡ b (mod m), where m =
m1m2 · · · mn. (This result will be used in Exercise 30
to prove the Chinese remainder theorem. Consequently,
do not use the Chinese remainder theorem to prove it.)

∗30. Complete the proof of the Chinese remainder theorem
by showing that the simultaneous solution of a system
of linear congruences modulo pairwise relatively prime
moduli is unique modulo the product of these moduli.
[Hint: Assume that x and y are two simultaneous solu-
tions. Show that mi | x − y for all i. Using Exercise 29,
conclude that m = m1m2 · · · mn | x − y.]

31. Which integers leave a remainder of 1 when divided by 2
and also leave a remainder of 1 when divided by 3?

32. Which integers are divisible by 5 but leave a remainder
of 1 when divided by 3?

33. Use Fermat’s little theorem to find 7121 mod 13.
34. Use Fermat’s little theorem to find 231002 mod 41.
35. Use Fermat’s little theorem to show that if p is prime and

p ̸ | a, then ap−2 is an inverse of a modulo p.
36. Use Exercise 35 to find an inverse of 5 modulo 41.
37. a) Show that 2340 ≡ 1 (mod 11) by Fermat’s little theo-

rem and noting that 2340 = (210)34.
b) Show that 2340 ≡ 1 (mod 31) using the fact that
2340 = (25)68 = 3268.

c) Conclude from parts (a) and (b) that 2340 ≡
1 (mod 341).
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38. a) Use Fermat’s little theorem to compute 3302 mod 5,
3302 mod 7, and 3302 mod 11.

b) Use your results from part (a) and the Chinese re-
mainder theorem to find 3302 mod 385. (Note that
385 = 5 · 7 · 11.)

39. a) Use Fermat’s little theorem to compute 52003 mod 7,
52003 mod 11, and 52003 mod 13.

b) Use your results from part (a) and the Chinese re-
mainder theorem to find 52003 mod 1001. (Note that
1001 = 7 · 11 · 13.)

40. Show with the help of Fermat’s little theorem that if n is
a positive integer, then 42 divides n7 − n.

41. Show that if p is an odd prime, then every divisor of the
Mersenne number 2p − 1 is of the form 2kp + 1, where
k is a nonnegative integer. [Hint: Use Fermat’s little the-
orem and Exercise 37 of Section 4.3.]

42. Use Exercise 41 to determine whetherM13 = 213 − 1 =
8191 andM23 = 223 − 1 = 8,388,607 are prime.

43. Use Exercise 41 to determine whetherM11 = 211 − 1 =
2047 andM17 = 217 − 1 = 131,071 are prime.

Let n be a positive integer and let n− 1 = 2s t , where s is a
nonnegative integer and t is an odd positive integer. We say
that n passesMiller’s test for the base b if either bt ≡ 1 (mod
n) or b2

j t ≡ −1 (mod n) for some j with 0 ≤ j ≤ s − 1. It
can be shown (see [Ro10]) that a composite integer n passes
Miller’s test for fewer than n/4 bases b with 1 < b < n. A
composite positive integer n that passes Miller’s test to the
base b is called a strong pseudoprime to the base b.

∗44. Show that if n is prime and b is a positive integer with
n ̸ | b, then n passes Miller’s test to the base b.

45. Show that 2047 is a strong pseudoprime to the base 2 by
showing that it passes Miller’s test to the base 2, but is
composite.

46. Show that 1729 is a Carmichael number.
47. Show that 2821 is a Carmichael number.

∗48. Show that if n = p1p2 · · · pk , where p1, p2, . . . , pk

are distinct primes that satisfy pj − 1 | n− 1 for j =
1, 2, . . . , k, then n is a Carmichael number.

49. a) Use Exercise 48 to show that every integer of the form
(6m + 1)(12m + 1)(18m + 1), wherem is a positive
integer and 6m + 1, 12m + 1, and 18m + 1 are all
primes, is a Carmichael number.

b) Use part (a) to show that 172,947,529 is a Car-
michael number.

50. Find the nonnegative integer a less than 28 represented by
each of these pairs, where each pair represents (a mod 4,
a mod 7).
a) (0, 0) b) (1, 0) c) (1, 1)
d) (2, 1) e) (2, 2) f ) (0, 3)
g) (2, 0) h) (3, 5) i) (3, 6)

51. Express each nonnegative integer a less than 15 as a pair
(a mod 3, a mod 5).

52. Explain how to use the pairs found in Exercise 51 to
add 4 and 7.

53. Solve the system of congruences that arises in Example 8.

54. Show that 2 is a primitive root of 19.
55. Find the discrete logarithms of 5 and 6 to the base 2 mod-

ulo 19.
56. Let p be an odd prime and r a primitive root of p.

Show that if a and b are positive integers in Zp , then
logr (ab) ≡ logr a + logr b (mod p − 1).

57. Write out a table of discrete logarithms modulo 17 with
respect to the primitive root 3.

Ifm is a positive integer, the integer a is a quadratic residue
of m if gcd(a, m) = 1 and the congruence x2 ≡ a (modm)
has a solution. In other words, a quadratic residue of m is
an integer relatively prime to m that is a perfect square mod-
ulom. If a is not a quadratic residue ofm and gcd(a, m) = 1,
we say that it is a quadratic nonresidue of m. For exam-
ple, 2 is a quadratic residue of 7 because gcd(2, 7) = 1 and
32 ≡ 2 (mod 7) and 3 is a quadratic nonresidue of 7 because
gcd(3, 7) = 1 and x2 ≡ 3 (mod 7) has no solution.
58. Which integers are quadratic residues of 11?
59. Show that if p is an odd prime and a is an integer not

divisible by p, then the congruence x2 ≡ a (mod p) has
either no solutions or exactly two incongruent solutions
modulo p.

60. Show that if p is an odd prime, then there are exactly
(p − 1)/2 quadratic residues of p among the integers
1, 2, . . . , p − 1.

If p is an odd prime and a is an integer not divisible by p, the

Legendre symbol
(

a

p

)
is defined to be 1 if a is a quadratic

residue of p and −1 otherwise.
61. Show that if p is an odd prime and a and b are integers

with a ≡ b (mod p), then
(

a

p

)
=
(

b

p

)
.

62. Prove Euler’s criterion, which states that if p is an odd
prime and a is a positive integer not divisible by p, then

(
a

p

)
≡ a(p−1)/2 (mod p).

[Hint: If a is a quadratic residue modulo p, apply Fer-
mat’s little theorem; otherwise, apply Wilson’s theorem,
given in Exercise 18(b).]

63. Use Exercise 62 to show that if p is an odd prime and a
and b are integers not divisible by p, then

(
ab

p

)
=
(

a

p

)(
b

p

)
.

64. Show that if p is an odd prime, then −1 is a quadratic
residue of p if p ≡ 1 (mod 4), and −1 is not a quadratic
residue of p if p ≡ 3 (mod 4). [Hint: Use Exercise 62.]

65. Find all solutions of the congruence x2 ≡ 29 (mod 35).
[Hint: Find the solutions of this congruencemodulo 5 and
modulo 7, and then use the Chinese remainder theorem.]
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66. Find all solutions of the congruence x2 ≡ 16 (mod 105).
[Hint: Find the solutions of this congruence modulo 3,
modulo 5, and modulo 7, and then use the Chinese re-
mainder theorem.]

67. Describe a brute force algorithm for solving the discrete
logarithm problem and find the worst-case and average-
case time complexity of this algorithm.

4.5 Applications of Congruences

Congruences have many applications to discrete mathematics, computer science, and many
other disciplines. We will introduce three applications in this section: the use of congruences
to assign memory locations to computer files, the generation of pseudorandom numbers, and
check digits.

Suppose that a customer identification number is ten digits long. To retrieve customer files
quickly, we do not want to assign a memory location to a customer record using the ten-digit
identification number. Instead, we want to use a smaller integer associated to the identification
number. This can be done using what is known as a hashing function. In this section we will
show how we can use modular arithmetic to do hashing.

Constructing sequences of random numbers is important for randomized algorithms, for
simulations, and for many other purposes. Constructing a sequence of truly random numbers is
extremely difficult, or perhaps impossible, because anymethod for generatingwhat are supposed
to be random numbers may generate numbers with hidden patterns. As a consequence, methods
have been developed for finding sequences of numbers that have many desirable properties of
random numbers, and which can be used for various purposes in place of random numbers.
In this section we will show how to use congruences to generate sequences of pseudorandom
numbers.The advantage is that the pseudorandomnumbers so generated are constructed quickly;
the disadvantage is that they have too much predictability to be used for many tasks.

Congruences also can be used to produce check digits for identification numbers of various
kinds, such as code numbers used to identify retail products, numbers used to identify books,
airline ticket numbers, and so on. We will explain how to construct check digits using congru-
ences for a variety of types of identification numbers. We will show that these check digits can
be used to detect certain kinds of common errors made when identification numbers are printed.

Hashing Functions

The central computer at an insurance company maintains records for each of its customers.
How can memory locations be assigned so that customer records can be retrieved quickly? The
solution to this problem is to use a suitably chosen hashing function. Records are identified
using a key, which uniquely identifies each customer’s records. For instance, customer records
are often identified using the Social Security number of the customer as the key. A hashing
function h assigns memory location h(k) to the record that has k as its key.

In practice, many different hashing functions are used. One of the most common is the
function

h(k) = k mod m

where m is the number of available memory locations.
Hashing functions should be easily evaluated so that files can be quickly located. The

hashing function h(k) = k mod m meets this requirement; to find h(k), we need only compute
the remainder when k is divided bym. Furthermore, the hashing function should be onto, so that
all memory locations are possible. The function h(k) = kmodm also satisfies this property.


